
 
 

 CHAPTER 2: PROBABILITY THEORY 
 

Everyone has an intuitive idea of what probability is: it has to do with the likelihood that 
something you’re interested in will happen. If you flip a coin, you may be interested in the 
likelihood of its coming up “heads”; if you throw a die, you might be interested in the likelihood  
of its coming up “6”, if you plan a picnic tomorrow, you might be interested in the likelihood of it 
not raining tomorrow, and so on.  

Probability theory is a major branch of mathematics, about which entire classes are taught 
and lengthy books written. In this chapter, we will cover the fundamentals of probability theory—
enough so that you'll be able to use it to understand the fundamentals of data analysis. Before 
going into probability theory, however, it will be useful to provide a very brief synopsis of set 
theory, because some of the concepts and notations of set theory conveniently carry over into 
probability theory. So first a brief side trip to the world of set theory. 

Set Theory 
A set, very simply, is a well defined collection of things. A “thing” can be—well anything. 

“Well defined” simply means that you can unambiguously specify whether any given thing is or 
is not a member of the set. So for instance, the integers between 1 and 10 inclusive form a set; all 
integers (not just those between 1 and 10) form a set; all real numbers form a set, people who are 
members of the British House of Commons form a set; and so on.  

Typically a set is referred to like this: 
A = {members of a set} 

where “A” is the name of the set (sets are usually but not always designated by a capital letter) 
and within the curly brackets is a specification of the Set A’s members in the form of either a 
definition or a listing of the set’s members. So for instance, we might designate, 

A = {all positive integers smaller than 11} 
or equivalently, 

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
Similarly we might designate, 

B = {all integers} 
and, 

C = {all real numbers} 
A Set’s Cardinality 

You may have noticed a distinction between, for example, Set A and Set B above. Set A 
contains a finite number of members (10, actually) while Set B contains an infinite number of 
members—you could go on forever, for example, listing integers.  Those of you who are really 
paying attention may have even noticed, or at least intuited, that there’s some kind of difference 
between Set B and Set C: even though the obviously both contain an infinite number of members, 
there’s something different about the infinite number of integers and the infinite number of real 
numbers.  

Let’s be a little more definitive about what we mean here. A set’s cardinality refers to the 
number of members that the set contains. Cardinality, it turns out, comes in three flavors: one 
finite flavor and two infinite flavors. 
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Finite sets 
Finite sets are simple: they contain a finite number of members. Set A above is a finite set 

containing, as it does, 10 members. Some sets can be finite but very big, for example the set of all 
stars in the Milky Way. 

Infinite sets 
It probably won’t  surprise you to hear that an infinite set is one that contains an infinite 

number of members. However, as we hinted above, not all infinities are the same. Infinite sets are 
divided into countably infinite and uncountably infinite sets. The difference between countably 
and uncountably infinite is a bit hard to describe but is easiest to imagine like this. 

Consider the set of all positive integers. Suppose you were asked to list all members of this 
set. You couldn't, of course, because there’re an infinite number of members. However, you could 
at least start. You could, for instance, begin at 1, then list 2, 3, 4, and so on until you got tired. 
The key here is that, because each member of the set is discrete, beginning to list them is an 
option. “Countable” is a misnomer, because you can't count all of them, but you can at least point 
to the members individually. 

 Now consider the set of all positive real numbers. Again it’s an infinite set. But suppose you 
were asked to begin listing them. This would present a problem. Even deciding on a starting point 
would be an issue. Suppose you decide to begin with the smallest number like did with the 
integers. What is the smallest member of the set? It’s not zero, because zero, not being positive, 
isn't a member of the set. How about, say, 0.0001. Well, OK, but it isn't the smallest number in 
the set, because there’s an infinite number of set members that are between zero and 0.0001. And 
so on. So you couldn’t start with the smallest member. You could, of course, start anywhere, say 
1.0. But then what’s next? The point here is that members of this set aren't discrete—no matter 
what you pick, the next one isn't clear. A rough way of characterizing the distinction between 
countably and uncountably infinite sets is that each member of a countably infinite set discretely 
sits apart from its fellow set members, while the members of an uncountably infinite set are all 
sort of “infinitely squished together.” We realize that this is less than ideal as a formal definition, 
but things will become clearer in a bit when we begin applying set theory to probability theory. 
Subsets 

A set, B is defined to be a subset of Set A if all members of B are also members of A. So for 
instance if,  

A = {All automobiles} 
and  

B = {All Saabs} 
then B is a subset of A because all Saabs are also automobiles. Notationally, we denote a subset 
relation as, 

A ⊆ B 
Notice that the “⊆” sign is sort of like the standard “≤” sign. Just as, for example, x ≤ y means “x 
is less than or equal to y,” B ⊆ A means “Set B is a proper subset of A” or “Set B and Set A are 
the same set.” By “proper subset” is meant that there is at least one member of A that isn't a 
member of B. Usually when we’re concerned with subsets, we’re concerned with proper subsets. 
The Universal Set (W) 

When using set theory in some real-life setting, there is typically some overall set of things 
that we’re interested in. We saw this in Chapter 1 in which we were measuring soup volume in 
cans of Acme soup. Here, the overall set of things in which we were interested is what we 
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referred to as the population of all Acme soup cans. Within the context of set theory, this is 
referred to as a universal set, and the letter W is reserved to denote it. 
Complements 

Having defined a universal set, we are now in a position to define a complement. So consider 
a universal set, say 

W = {All Oxford University undergraduates} 
Now suppose that 

A = {All female Oxford undergraduates} 
Then the complement of A, designated 

€ 

A   is all Oxford undergraduates who aren't females, i.e.,  

€ 

A  = {All male Oxford undergraduates}. 
Unions 

Suppose we have two sets, A and B. As an example, 
A = {All left-handed humans}  

and 
B = {All male humans} 

Then the union of A and B, designated (A ∪ B) is the set of all objects that are members of Set A 
or Set B or both. So in this case, we could, if we like, define a new set C as, 

C = (A ∪ B) = {All humans who are left-handed or male or both) 
Notice that (A ∪ B) usually (although not always) contains more members than either A or B 
individually. 
Intersections 

Let’s consider the same two sets, A and B, i.e., 
A = {All left-handed humans}  

and 
B = {All male humans} 

Then the intersection of A and B, designated (A ∩ B) is the set of all objects that are members of 
both Set A and Set B. So in this case, we could, if we like, define a new set D as, 

D = (A∩B) = {All left-handed male humans) 
Notice that (A ∩ B) usually (although not always) contains fewer members than either A or B 
individually. 
The empty set 

The set with nothing in it is called the empty set and is designated ∅. 
Complements 

Consider an event, A, that is part of a universal set, W. The complement of Set A, designated 

€ 

A , consists of all members of A that are not members of W. As a simple example suppose, 
W = {All Italian citizens} 
A = {All female Italian citizens} 

then, 

€ 

A  = {All male Italian citizens} 
Mutually exclusive and exhaustive sets 

Any number of sets, A, B, C,… are mutually exhaustive if the union of these sets is W, i.e., if 
among them they exhaust the universal set. So consider a universal set, 
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W = {All people who are living or have ever lived} 
along with three subsets of W, 

A = {All people born before 1990} 
B = {All people born after 2000} 
C = {All people born between 1975 and 2008} 

Then (A∪B∪C) includes all of W; thus A, B, and C are mutually exhaustive. 
Any number of sets, A, B, C,… are mutually exclusive if the intersection of any two of the 

sets is ∅. Again considering the universal set, 
W = {All people who are living or have ever lived} 

along with three different subsets of W, 
A = {All people born before 1990} 
B = {All people born after 2000} 
C = {All people born between 1992 and 1995} 

Because any two of these sets have an intersection of ∅, they the three are mutually exclusive. 
Partitions 

Finally, suppose some number of sets, sets, A, B, C,… are both mutually exclusive and 
mutually exhaustive. These sets are then said to partition the sample space. Again using the same 
example, three sets that would partition W would be, 

A = {All people born before 1990} 
B = {All people born after 2000} 
C = {All people born between and including 1990 and 2000} 

Basic Probability Theory 
Equipped with this foundation in set theory, we are now ready to proceed to a discussion of 

probability theory. Everyone has a general idea of what probability is: it has to do with the 
likelihood that something you’re interested in will happen. If you plan a picnic tomorrow, you’re 
interested in whether it will rain. If you roll two dice you might be interested in whether the dice 
sum to 7. And so on. 
Situations and Outcomes 

To begin to formalize probability theory, we consider a situation along with some outcome of 
that situation in which we are interested. Here are some examples. 

 
Situation Outcome 

Throw a die Die comes up a “4” 
Toss a coin Coin comes up “heads” 

Plan a picnic for tomorrow It rains tomorrow 
Shoot a free throw in basketball You make the basket 

 
A Basic Equation for Probability 

Let’s consider one of these situations: tossing a die with an interest in the die coming up a 
“4”.  At this point, everyone reading this book probably knows that the probability that a fair die 
turns up “4” is 1/6. Fine. Let's use this intuitive knowledge as a basis for understanding the logic 
behind a basic equation for probability. To begin with, let's consider a universal set consisting of 
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all possible outcomes of the situation. In probability theory, we refer to this universal set as “S” 
and we call it a sample space. In this simple example, it’s easy to specify S, which is, 

S = {1, 2, 3, 4, 5, 6} 
Each member of S is referred to as an elementary event. Now let's define f(S) as the number (“f” 
for “frequency”) of elementary events in S. In more complex examples, this won't be so easy to 
do, but in this example, it’s obvious that f(S) = 6. 

Now define another set—we’ll call it A—as that subset of S that contains those elementary 
events corresponding to Outcome A, i.e., our outcome of interest. Again in this example, it’s 
simple. If Outcome A is “die comes up a ‘4’” then, 

A = {4} 
and again using our “f” notation, f(A) = 1. The basic equation for probability is then: 

€ 

p(A)=
f(A)
f(S)

 Equation 1.1 

or in this example, 

€ 

p(A)=
1
6

= .167   

Another Example and an important Caveat 
The preceding example was pretty simple: intuitively and formally, the answer turned out to 

be 1/6. Let’s consider another example that’s a bit more complicated. Let's suppose, using census 
data, that you manage to track down all U.S. families who have exactly four children. Suppose 
further that we randomly select one such family. Define Outcome A to be: the selected family has 
2 boys and 2 girls. What is the probability of this outcome? 

To answer this question, we first need to establish S, the sample space of all possible 
outcomes, i.e., elementary events corresponding to this situation. To do so it’s useful to start with 
one elementary event. An obvious candidate might be: all boys. Let's’ designate this elementary 
event as “BBBB” indicating that the family had a boy four times in a row. Similarly, for example, 
“GBGB” would indicate that the family had a girl, then a boy, then another girl then finally 
another boy. With this notational scheme, we can, with some effort, systematically list all 
possible outcomes: the members of S, the sample space are, 

 
Sequences of boys and girls in a 4-child family 

BBBB BBBG BBGB BBGG 
BGBB BGBG BGGB BGGG 
GBBB GBBG GBGB GBGG 
GGBB GGBG GGGB GGGG 

  
and it is easy to see that f(S) = 16. Our next step is to count up all members that correspond to our 
outcome of interest, i.e., 2 boys and 2 girls. This set is, 

A = { BBGG, BGGB, GBGB, GGBB, GBBG, BBGG} 

So f(A) = 6 and p(A) = f(A)/f(S) = 6/16 = 0.0375 
Notice that in this problems, we used the term “randomly select”. This term has an important 

meaning in statistics and experimental design. Specifically, it means that we select our family 
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such that of all the 4-kid families we’ve identified (let's say, for the sake of simplicity, that there 
are 1,000,000 of them) each one has an equal chance of being chosen. 

The equiprobability assumption 
To use Equation 1.1, we must make an important assumption called the equiprobability 

assumption. This is that all elementary events in the sample space occur with equal probability. 
Within the context of our die example it means that the die is a fair die, i.e., that it is 
manufactured such that each face has an equal probability of coming up. This is a reasonable 
assumption because dice factories are very careful to manufacture dice this way. 

With our 4-kid example, the equiprobability assumption is more suspect. For example, it 
appears to be true that slightly more than 50% of children born are boys. This would mean, for 
instance that the probability of a BBBB sequence would likely be a bit higher than the probability 
of a GGGG sequence. 

To the degree that the equiprobability assumption is incorrect, any probability that we 
compute using Equation 1.1 is similarly incorrect. But if the equiprobability assumption is 
approximately correct—as it is for the 4-kid example—then Equation 1.1’s answer is, likewise, 
also approximately correct. 

More General Laws of Probability 
Equation 1.1 is widely used in everyday applications of probability theory. However, as we 

have just seen, it does have the limitation that the equiprobability assumption is required for it to 
be accurate. In this section we describe some important laws of probability that are more 
general—they do not require the validity of the equiprobability assumption to be true. 
The Addition Rule for Mutually Exclusive Events 

Suppose you throw a die. To make life more interesting, suppose that the die is not fair, but 
that the probabilities of the various faces coming up are: 

p(1) = .10 
p(2) = .10 
p(3) = .15 
p(4) = .15 
p(5) = .20 
p(6) = .30 

which means that the equiprobability assumption is violated and Equation 1.1 can't be used. What 
is the probability that the die comes up an even number? 

Note first that the probability we seek is of the union of three events, i.e., letting “E” be the 
event, “die comes up an even number,” 

p(E) = p(2 ∪ 4 ∪ 6) 
Note that the three events, die comes up 2, 4, or 6 are mutually exclusive, i.e., if one of them (e.g., 
die comes up 4) occurs then neither of the others can occur.  

To compute the probability of the union of mutually exclusive events, we simply add the 
individual probabilities, i.e., in general,  for N mutually exclusive events, 

p(A ∪ B ∪ C ∪…∪ N) = p(A) + p(B) + p(C) +…+ p(N) Equation 1.2 
which makes the answer to our problem easy to compute: 

p(E) = p(2 ∪ 4 ∪ 6) = p(2) + p(4) + p(6) = .10 + .15 + .30 = .55 
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To recapitulate: Equation 1.2 can be used whenever one is trying to compute of an event that 
is itself the union of mutually exclusive events. 
And if the Events are not Mutually Exclusive? 

Then things can become complicated particularly when there are more than two events. 
However, in the common situation where there are only two events to contend with, it’s still 
relatively simple. Suppose, for example, we pick a playing card from an elderly deck in which 7 
of the cards are missing leaving only 45 rather than the standard 52. In particular, for the four 
suits, 

Clubs: All 13 cards are there; thus, p(C) = 13/45 =  .289 
Diamonds: Missing, the 2, 3, 4, and 10; thus, p(D) = 9/45 = .200 
Hearts: Missing the Jack and King; thus, p(H) = 11/45 = .244 
Spades: Missing the Ace; thus, p(S) = 12/45 = .267 

and other than that, the deck is normal and well-shuffled. Now we ask the question: what is the 
probability that the card we select is a Heart, or a Face card (or both)? Thus, we wish to compute 
p(H ∪ F) where H is the event, “Heart picked”  and F is the event, “Face card picked”. The 
relevant equation is, in general for events A and B, 

p(A ∪ B) = p(A) + p(B) - p(A ∩ B) Equation 1.3 
so in this example,  

p(H ∪ F) = p(H) + p(F) - p(H ∩ F) 
We already know that p(H) = 11/45. How about p(F)? Among the 45 cards, only the two face 
cards from the Heart suit are missing, so there are 10 face cards remaining and p(F) = 10/45. 
Finally, p(H ∩ F) = 2/45—the probability of selecting the one remaining Heart face card, the 
Queen. So, 

p(H ∪ F) = 11/45 + 10/45 - 1/45 = 20/45 = .444 
It is useful to understand how Equation 1.3 works from a slightly different perspective. There are 
f(H ∪ F) = 20 cards in the deck that fall into the union, (H ∪ F)—the 11 hearts plus the 9 face 
cards from the other three suits. So p(H ∪ F) can be computed as, 

€ 

p(H∪F)=
f(H∪F)
f(S)

=
20
45

= .444  

Now notice that when you add p(H) = 11/45 to p(F) = 10/45, you’ve counted the probability of 
the intersection, i.e., the probability of selecting the Queen of Hearts, twice: once as part of p(H) 
and again as part of p(F). So you have to subtract it off to get the correct answer. 

Before leaving this topic, notice one more thing about Equation 1.3: if A and B are mutually 
exclusive, then f(A ∩ B) = 0 and p(A ∩ B) = 0 as well, which means that Equation 1.3 would 
reduce to, 

p(A ∪ B) = p(A) + p(B), 
as, by Equation 1.2, it is supposed to for two mutually exclusive events. So Equation 1.3 is a 
general equation, that applies to any two events, no matter how they relate to one another. 
The Complement Rule 

Let's go back to our 4-kid example. Suppose we wish to compute the probability that a 
randomly-selected family has at least one boy, i.e., p(1 boy ∪ 2 boys ∪ 3 boys ∪ 4 boys). We 
could use Equation 1.2, along with our sample space of all f(S) = 16 possible outcomes back on p. 
xx  to add up the probabilities of the four mutually exclusive events whose union we’re seeking 
i.e.,  
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p(at least one boy) = p(1 boy) + p(2 boys) + p(3 boys) + p(4 boys) 
which, using the sample space on p. xx, we can compute to be, 

p(at least one boy) = 4/16 + 6/16 + 4/16 + 1/16 = 15/16 = .937 
However, a simpler way of doing this would be to consider the complement of the event 

we’re seeking. Note that, 

€ 

p(A)=
f(A)
f(S)

 

and that 

€ 

p(A ) =
f(A )
f(S)

 

Now because f(

€ 

A ) = f(S) - f(A), 

€ 

p(A ) =
f (S − A)

f (S)
=

f (S)− f (A)
f (S)

=1− f (A)
f (S)

=1− p(A)  

or rearranging terms,  

p(A) = 1-p(

€ 

A )  Equation 1.4 
Equation 1.4 is quite useful because it’s often easier to compute the probability of some 

event’s complement than to compute the probability of the event itself. Returning to our example 
problems, if Event A that we’re seeking is “at least one boy” then its complement, Event 

€ 

A , 
would be “all girls”. It’s easy to see that p(all girls) = 1/16, so p(at least one boy) would be, (1 –
 1/16) = 15/16 = .937, as we already worked out via the more complicated sum-of-mutually-
exclusive-events route. 

Conditional Probability 
Remember Estatia? Suppose that the Estatian department of labor statistics (EDLS) is 

investigating employment patterns in the small Estatian town of Eastwich. The Eastwich labor 
force, like Eastwich itself, is small, consisting only of 250 people. The EDLS initially categorizes 
these 250 workers into Set E, those who are employed versus Set 

€ 

E , those who are unemployed. 
Additionally, the EDLS categorizes the 250 workers into Set B, those who are blue-collar 
workers versus Set 

€ 

B , those who are white-collar workers. It turns out that f(E) = 175 employed 
people and f(B) = 100 blue-collar workers. 

A Contingency Table 
Table 2.1 is the beginning of a useful representation of many things including the kind of set 

interactions that we’ve just described. In it the sample space, S, is represented as a rectangle, the 
one with the double-line border. At the bottom-right, “f(S) = 250” indicates that there are 250 
elementary events in this sample space. 

The sample space is then divided in two ways. The two columns partition S into the two sets, 
B and 

€ 

B , while the two rows partition S into E and 

€ 

E . The marginal frequencies shown in the 

Table 2.1 
 B (Blue-collar) 

€ 

B  (White-collar)  

E (Employed) f(E∩B) = 50  f(E) = 175 

 (Unemployed)   f( ) = 75 
 f(B) = 100 f(

€ 

B ) = 150 f(S) = 250 

€ 

E 

€ 

E 
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far-right column and the bottom row represent how the f(S) = 250 people are divided up  
according to employment versus non-employment (f(E) and f(

€ 

E ) and according to blue-
collar versus white-collar (f(B) and f(

€ 

B). Note how both the column and row marginal 
frequencies add to the total frequency, f(S) = 250. Note also that this information is represented 
spatially (which is to say intuitively) in that the employed people can be thought of as occupying 
the top row, the blue-collar people can be thought of as occupying the left column, and so on. 

In Table 2.1, we have also provided one new piece of information—the number of employed 
blue-collar people, i.e., f(E ∩ B) = 50. Again we can think spatially; these employed, blue-collar 
people occupy the top-right cell of the contingency table. Note also that the term intersection also 
has a spatial meaning: f(E ∩ B) is literally the cell comprising the intersection of employed 
people and blue-collar people. 

Having provided f(E ∩ B), we can now compute the frequencies of the remaining cells in the 
table as shown in the more complete Table 2.2. So, for example, if there are 175 employed people 
and 50 of them are blue-collar, then the remaining 125 must be white-collar, which allows us to 
fill in the intersection of Employed and Blue-collar with f(E ∩

€ 

B ) = 125. And so on for the 
remaining two cells. 

 
Inspection of Table 2.2 quickly shows that everything adds up very neatly: the two cell 

frequencies in each column add to the column frequency; the two cell frequencies in each row 
add to the row frequency, and all four cell frequencies add to f(S) = 250. Note that providing just 
one cell frequency was sufficient to fill in to total table: as it happened we provided f(E ∩ B) = 
50, but we could have provided any one of the four cell frequencies. 
Frequencies to Probabilities 

As is evident Table 2.2 describes the situation we’re interested in with respect to frequencies: 
it is descriptive in that it tells us how many people are in which of the various sets. But we can 
think of the same information in a somewhat different way. Suppose that we were to randomly 
select a person from the workforce—and by “randomly select” we mean that each of the f(S) = 
250 people has an equal chance of being selected—and ask what is the probability that the 
selected person is in this or that set? 

Moving from the Table 2.2 frequencies to such probabilities is simple. Given the assumption 
of random selection, we can use Equation 2.1 for computing any probability of interest. For 
instance, the probability that a randomly-selected person is employed is, 

€ 

p(E)=
f(E)
f(S)

=
100
250

= .600  

or, the probability that a randomly-selected person is an unemployed blue-collar worker is, 

 

 

Table 2.2 
 B (Blue-collar) 

€ 

B  (White-collar)  

E (Employed) f(E∩B) = 50 f(E∩

€ 

B ) = 125 f(E) = 175 

 (Unemployed) f( ∩B) = 50 f( ∩

€ 

B ) = 25 f( ) = 75 

 f(B) = 100 f(

€ 

B ) = 150 f(S) = 250  

€ 

E 

€ 

E 

€ 

E 

€ 

E 
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€ 

p(E  ∩  B) =
f(E  ∩  B)

f(S)
=

50
250

= .200  

Using similar logic, we can reproduce Table 2.2, expressing everything in terms of probabilities, 
which is done in Table 2.3. Note that, as in Table 2.2, things sum in an organized way: cell 
probabilities in each column sum to the column probability, cell probabilities in each row sum to 
the row probability. Also, the two column marginal probabilities, the two row marginal 
probabilities, and the four cell probabilities add to 1.0. 

 
Joint Probabilities 

Each cell of Table 2.3 contains the probability of an intersection of two events—p(E∩B), 
p(E∩

€ 

B ), etc. The probability of an intersection is known as a joint probability, referring to the 
fact that it is the probability of two things jointly happening. 
 
Conditional versus Unconditional Probability 

As we’ve seen, using Table 2.2, it is easy to compute a probability such as p(E), which is 
f(E)/f(S) = 175/250 = .70. This kind of probability is referred to as unconditional probability—it 
is simply the overall probability that something occurs.  

Now suppose we were to do something a bit different. We again randomly select a person 
from the Eastwich workforce. Suppose that we learn from this person—say her name is Zelda—
that she’s a blue-collar worker. Knowing this piece of information about Zelda, we can now ask: 
what is the probability that she is employed?  

Look carefully at Table 2.2. Knowing that Zelda is blue-collar means that she is one of the 
f(B) = 100 people in the left column of Table 2.2. Furthermore, of these f(B) = 100 people, 
f(E∩B) = 50 of them are employed. This means that the probability that Zelda is employed is 
50/100 = .50. This is an example of what is called conditional probability: the probability of 
some event given that something else is true, in this case, the probability of a person’s being 
employed given that the person is blue-collar. Generally, a conditional probability of some 
outcome A, given that something else, B is true, is designated by p(A|B), i.e., the vertical line, “|” 
is shorthand for “given.” In our example, we are thus talking about the probability, p(E|B). 

The Equation for Conditional Probability 
In this example, it should be easy to see that an equation for the conditional probability that 

we sought was, implicitly, computed by the equation,  

€ 

p(E | B)=
f(E∩B)
f(B)

   

Table 2.3 
 B (Blue-collar) 

€ 

B  (White-collar)  

E (Employed) 

€ 

p(E∩B) =
50
250

= .20  

€ 

p(E∩B ) =
125
250

= .50  

€ 

p(E) =
125
250

= .70  

 
(Unemployed) 

€ 

p(E ∩B) =
50
250

= .20  

€ 

p(E ∩ B ) =
25
250

= .10  

€ 

p(E ) =
75

250
= .30  

 

€ 

p(B) =
100
250

= .40  

€ 

p(B ) =
150
250

= .60  

€ 

p(S) =
250
250

=1.00 
€ 

E 

€ 

E 
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which is fine. However the way that conditional probability is usually expressed is to divide 
numerator and denominator by f(S) to get, 

€ 

p(E | B)=
[f(E∩B)/f(S)]
[f(B)/f(S)]

=
p(E∩B)
p(B)

  

or, 

€ 

p(E | B)=
.20
.40

= .50   

just as we computed it to be before. So, to summarize, for any two events A and B, the 
conditional probability of A given B is, 

€ 

p(A | B)=
p(A∩B)
p(B)

  

Some Examples 
Just to make sure that the use of Equation 1.6 is clear, here are some examples of how it is 

used based on our Eastwich workforce example. 

€ 

p(B | E) =
p(B∩E)
p(E)

=
.20
.70

= .29   

€ 

p(E | B) =
p(E∩B)
p(B)

=
.20
.40

= .50   

€ 

p(E | B) =
p(E∩B)
p(B)

=
.10
.60

= .17   

Some  Important Properties of Conditional Probability  
Here are some important things to keep in mind about the relation between certain pairs of 

conditional probabilities. 

The complementary relation between p(A|B) and p(

€ 

A |B) 
Take a look at two more conditional probabilities that can be computed from Table 2.3. The 

first is, 

€ 

p(B | E) =
p(B∩E)
p(E)

=
.20
.70

= .29   

and the second is, 

€ 

p(B | E) =
p(B∩E)
p(E)

=
.50
.70

= .71  

Notice that these two probabilities add to 1.0. In general, the two probabilities, p(A|B) and  
p(

€ 

A |B) must add to 1.0. Intuitively, the reason is this. Both probabilities are restricted to the case 
when B is true. Given that B is true, either A or 

€ 

A  must occur. That is, given that B is true, 
p(A|B) and p(

€ 

A |B) are complements of one another. 
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The non-relation between p(A|B) and p(B|A) 
Above, we computed that p(E|B) = .50 and that p(B|E) = .29. These two probabilities don't 

seem to have much to do with one another—for instance, they’re not equal; they don't add to 1.0, 
etc. This observation is correct: in general there’s no necessary relation between the two 
conditional probabilities, p(A|B) and p(B|A). 

There is a reason that this lack of relation is interesting beyond its value in understanding 
statistics: these two conditional probabilities are frequently confused in real life—which leads to 
no end of mischief in interpretation of various real-world phenomena. Here are two examples of 
such confusion. 

Example 1: Marijuana as a starter drug. Many years ago, the U.S. Government embarked 
on quite a crusade to persuade the public that marijuana was a highly dangerous drug. Among the 
many charges that government agencies leveled against this weed was that it was a starter drug, 
i.e., that marijuana use led inexorably to the use of even more dangerous drugs such as heroin. In 
support of this assertion, the government pointed to the (correct) fact that a large majority of 
heroin users had smoked marijuana prior to using heroin. This, they claimed, was proof that 
marijuana use led to heroin. 

Let’s couch this situation within the framework of conditional probability. We’ll designate  
event M “uses marijuana” and event H “uses heroin.” The correct fact relied upon by the 
government—that a high percentage or heroin users also used heroin—can be expressed as 

p(M|H) is high 
However, the conclusion reached by the government—that marijuana use leads to heroin use—is 
expressed by, 

p(H|M) is high 
which does not necessarily follow because, as we've just seen, the two conditional probabilities 
p(H|M) and p(M|H) bear no necessary relation to each other. 

To be more specific, suppose that in Estatia there are 4,000,000 marijuana users out of the 
country’s 20,000,000 residents, i.e., p(M) = .20. Suppose further that there are 1,200,000 heroin 
users, i.e., p(H) = .06. Suppose further that of these 1,200,000 heroin users, 1,000,000 of them 
began by using marijuana, i.e., p(M∩H) = .05. Now we can compute the relevant conditional 
probabilities. The probability of being a marijuana user given that you’re a heroin user is, 

€ 

p(M | H) =
p(M∩H)
p(H)

=
.05
.06

= .83   

while the probability that you’re a heroin user given that you’re a marijuana user is, 

€ 

p(H | M) =
p(M∩H)
p(M)

=
.05
.20

= .25   

So applied to the Estatian population it’s true that heroin users tend to be marijuana users, but not 
true that marijuana users tend to be heroin users. 

Example 2: The case against universal AIDS testing. In Estatia, a test is developed by the 
Estatian billionaire-philanthropist-medical researcher, Alex d’Irchesse whose purpose is to detect 
the presence of the AIDS virus. The d’Irchesse test is very good in the following ways. First the 
test’s false-negative rate is zero; that is, the test never shows negative if given to a person who in 
fact has AIDS. Second, the test’s false-positive rate is only 5%; that is, if the test is administered 
to a person who does not have AIDS, the test will only register positive 5% of the time. 
Furthermore, d’Irchesse is willing to finance the test’s easy and universal availability to all 
Estatians. Should a grateful nation accept this offer? 
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“Why not” would probably be a pretty common answer. The test appears to be almost perfect, 
it’s free, and it’s universal. What’s not to like? Well, here’s the problem. Under reasonable 
assumptions, a person testing positive on the test would—counterintuitively—actually have a 
very small probability of having AIDS. Let’s get a general idea of why this is, and then we’ll 
proceed to a numerical example. The disconnect between intuition and reality, issues from, as you 
may have guessed, a confusion between p(A|B) and p(B|A). 

Let’s let A be the event, “person has AIDS” and P be the event, “person tests positive”. The 
false-positive rate of 1% can now be couched as, p(P|

€ 

A ) = .05 which, in keeping with the 
confusion we’ve been discussing, promotes the misbegotten intuition that, p(

€ 

A |P)—the 
probability that you don't have AIDS given that you test positive—is probably pretty small as 
well (which, of course, would imply that p(A|P), the probability that you do have AIDS given that 
you test positive must be pretty high). But, as we've been emphasizing, these two probabilities, 
p(P|

€ 

A ) and p(

€ 

A |P) bear no necessary relation to each other so this conclusion, intuitive though it 
might be, isn't valid. 

Let’s be more specific. As we know from the previous example, there are 20,000,000 people 
in Estatia. What’s more, it’s believed that 1%, or 200,000 of them actually have AIDS, i.e.,  

p(A) = .01 
Now what happens with universal testing? First let's calculate how many people will test 

positive. Such people will include the 200,000 people who actually do have AIDS (remember the 
false-negative rate is zero) plus, because of the 5% false-positive rate, 5% of the remaining 
19,800,000 people who don't have AIDS, or 990,000 additional people. So 

f(P) = 200,000+990,000 = 1,190,000 people in all 
and so, 

p(P) = 1,190,000/20,000,000 = .0595.  
Meanwhile, again because of the zero false-negative rate, the only people in the set, (P∩A) are 
the 200,000 people actually afflicted with AIDS, i.e.,  

f(P∩A) = 200,000,  
and so  

p(P∩A) = 200,000/20,000,000 = .01.  
Armed with these fact, we can, finally, compute that, 

€ 

p(A | P)=
p(A∩P)
p(P)

=
.0100
.0595

= .17   

which means, because p(

€ 

A |P) = 1-p(A|P), that p(

€ 

A |P) = .83. 
So let's just sum up: If you test positive on this very reliable d’Irchesse test, the probability is 

.17 that you actually have AIDS but .83 that you are a false positive. In other words, given that 
you test positive for AIDS, the probability is greater, by almost a factor of 5, that you don’t have 
AIDS than that you do have AIDS. This is going to unnecessarily scare a lot of people and seems 
like a persuasive argument against a universal AIDS test. 

Is this to say that AIDS tests (or similar tests for the presence of any other disease), unless 
perfect, should never be used? Well no. Here’s why and what can be done with such tests. The 
basic reason for this problem is that the overall proportion of people who have AIDS—what’s 
known as the base rate—is very low, only 1% in the Estatistan population. This is why the 
number of false positives is so high—5% of the remaining 99% of the people is still a lot of 
people compared to the number of people who actually have AIDS. So instead of administering 
the test universally, it can instead be administered only to those individuals who have a relatively 
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high probability of having AIDS to begin with. Let's suppose, for example, that we consider only 
the 300,000 Estatians who report both using intravenous drug and engaging in unprotected sex. 
Suppose that 60% of these individuals are estimated to have AIDS. If the d’Irchesse test were 
given to those individuals only, we could compute (and we urge you to do these computations 
yourself) that, 

p(A|P) = .97 
p(

€ 

A |P) = .05 
which is considerably more in keeping with what we would like. 

Conditional probability and joint probability are different! 
Gabriella, an Estatian high-school student is taking Driver’s Education. One day her teacher 

asserts to the class that, “most accidents occur within 10 kilometers of home” and went on to list 
the reasons that driving close to home is more dangerous than driving far from home—a driver is 
lulled by familiarity into not paying attention, is more likely to be driving with distracting friends, 
etc. 

Gabriella was not so sure though that her teacher’s conclusion—that driving close to home is 
more dangerous than driving far from home—necessarily followed from the fact that “most 
accidents occur within 10 kilometers of home.” Most driving takes place within 10 kilometers of 
home,” she reasoned, “so maybe that’s why most accidents occur there.” Enlisting the help of her 
mother who happened to be a statistician, Gabriella researched Estatian driving and accident 
records. She discovered, confirming her intuitions, that 85% of Estatian driving trips were to 
locations within 10 kilometers of home. Digging further, she found that on .8% of all Estatian 
trips, there is an accident of one sort or another (Estatians are somewhat crazy drivers). Focusing 
only on these .8% of the trips that resulted in accidents, she nailed down the last fact she needed: 
they divided themselves into  .6% that occurred within 10 kilometers of home and .2% that 
occurred elsewhere.  

Let's translate Gabriella’s findings into joint and conditional probabilities. We’ll let H be “a 
trip within 10 miles of home” and A be “have an accident on a trip”. Gabriella’s discovery that 
85% of trips were close to home translates to, 

p(H) = .85 
which means that the probability of a trip far from home is, 

p(

€ 

H ) = 1-p(H) = .15 
We can also translate Gabriella’s finding about accidents near and far from home to relevant joint 
probabilities of… 

…an accident close to home: p(A∩H) = .006 
and 

…an accident far from home: p(A∩

€ 

H ) = .002 
confirming the fact cited by Gabriella’s Driver’s Ed teacher: an accident is three times as likely to 
occur close to home than far from home. But to assess how dangerous is driving close to versus 
far from home, Gabriella calculated conditional probabilities, i.e., the probability of an accident 
given that you’re close or far from home. That is, we can compare the relevant conditional 
probabilities of… 

…an accident given that you’re close to home: 

€ 

p(A | H) =
p(A∩H)
p(H)

=
.006
.850

= .00706   

and 
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…an accident given that you’re far from home: 

€ 

p(A | H ) =
p(A∩H )

p(H)
=

.002

.150
= .01333  

In other words, the Driver’s Ed instructor, although correct in his fact, was wrong in his 
conclusion: it’s actually almost twice as  dangerous driving far from home as driving close to 
home. The disconnect comes about because of the difference between joint probability (which 
underlies the fact) and conditional probability (which underlies the conclusion). 

Independence 
Let’s return to Table 2.3 which describes some employment facts in the Estatian town of 

Eastwich. Suppose that we are interested in the probability that a person is employed given that 
he or she is white versus blue collar. We can compute these conditional probabilities, 

€ 

p(E | B)=
p(E∩B)
p(B)

= .2 /.4 = 0.50   

and 

€ 

p(E | B ) =
p(E∩B )

p(B )
= .5 /.7 = 0.71  

So there seems to be a connection between blue/what collar and employment status in that the 
probability is higher that a white-collar person is employed (0.714) than if a blue-collar person is 
employed (0.500). This fact can be summarized by saying that employment status depends on 
blue/white collar, i.e., they are not independent. 

Again, suppose that the town workforce of 250 people is partitioned according to the 175 
employed people and the remaining 75 unemployed people. Suppose however, that the other way 
of dividing up the workforce is by gender and in particular, there are 100 females and 150 males, 
as shown in Table 2.4. So in terms of the marginal frequencies, Table 2.4 looks exactly like Table 
2.2, where blue/white collar is substituted for gender. 

 
Note, however, that the joint frequencies in Table 2.4 are different from those of Table 2.2 

and similarly the when the data are expressed as probabilities (Table 2.5) the four joint 
probabilities differ from the associated joint probabilities of Table 2.3. 

Just as we computed the conditional probabilities of being employed given that a worker is 
blue- or white-collar, we can compute the probabilities of being employed given that a worker is 
female or male. These probabilities are, 

€ 

p(E | F)=
p(E∩F)
p(F)

= .28 /.40 = 0.70   

and 

Table 2.4 
 F (Female) 

€ 

F  (Male)  

E (Employed) 

€ 

f(E∩F) = 70  

€ 

f(E∩F ) =105  

€ 

f(E)=175  

 (Unemployed) 

€ 

f(U∩B ) = 30  

€ 

f(E ∩F ) = 45  

€ 

p(E ) = 75  

 

€ 

f(F)=100  

€ 

f(F ) =150  

€ 

f(S)= 250  

€ 

E 

€ 

E 
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€ 

p(E | F ) =
p(E∩F )

p(F )
= .42 /.60 = 0.70   

In other words, there is no connection between gender and employment status: the probability of 
being employed is the same, 0.7, whether a worker is a female or a male, or simply a randomly 
picked person from the town, i.e., the unconditional employment probability is also 0.7. 

 
Independence Defined 

These intuitive examples lead us to a formal defendant of independence: two events, A and B 
are independent if and only if, 

€ 

p(A | B) = p(A | B ) = p(A) 

The multiplication rule for independent events 
This definition of independence allows derivation of another central law of probability: the 

multiplication rule for independent events. From the equation for independence, and from our 
basic definition of condition probability, we can deduce that when A and B are independent, 

€ 

p(A | B) = p(A) = p(A∩B)
p(B)

 

or, multiplying both sides of this equation by p(B), 

€ 

p(A∩B) = p(A)p(B) 

That is: the probability of the joint event is the product of the two individual probabilities. 
Empirical versus Theoretical Independence 

In the examples we’ve been describing so far, independence (as in the gender example) or 
lack of it (as in the race example) have been determined by data. In other words, there was no 
way of knowing whether independence would hold until we actually went in and looked at the 
frequencies in the various cells of the contingency tables. These are examples of what we call 
empirical independence. 

In contrast, one often begins with the proposition that two events are independent because of 
a priori knowledge of how the world works. If one can safely assume that two events are 
independent then one can use the multiplication rule to compute joint-event probability. As an 
example, suppose that a fair coin is flipped twice. What is the probability that both flips come up 
heads? This probability can be expressed as p(H1∩H2) where H1 and H2 are the probabilities of 
a head coming up on the first and second toss respectively. Now here is the critical thing: we can 

Table 2.5 
 F (Female) 

€ 

F  (Male)  

E (Employed) 

€ 

p(E∩F) =
70
250

= .28 

€ 

p(E∩F ) =
105
250

= .42  

€ 

p(E) =
125
250

= .70  

 (Unemployed) 

€ 

p(U∩B ) =
30

250
= .12  

€ 

p(E ∩F ) =
45

250
= .18  

€ 

p(E ) =
75

250
= .30  

 

€ 

p(F)=
100
250

= .40  

€ 

p(F ) =
150
250

= .60  

€ 

p(S) =
250
250

=1.00 
€ 

E 
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generally assume that H1 and H2 are independent of one another: in general, there is no reason to 
expect that the outcome of one toss will affect the outcome of the other. Therefore, under the 
assumption of independence, we can use the multiplication rule to calculate that, 

p(H1∩H2) = p(H1) x p(H2) = .5 x .5 = .25 
The multiplication rule can be applied to arbitrarily many mutually independent events. 

Suppose that, for example, one flips a coin twice and then throws two dice. What is the 
probability that both coin tosses will turn up heads and that first die throw will turn up a 5 and 
that the second die throw will turn up an odd number? Again we can assume a priori that each of 
these four events is independent of each of the other three, i.e., that none of these events affects 
any of the other 3, so they are all mutually independent. The multiplication rule can be used to 
compute the joint probability of all four events: denoting them as H1, H2, D5, and DE, 

p(H1∩H2∩D5∩DE) = p(H1) x p(H2) x p(D5) x p(DE) = (1/2) x (1/2) x (1/6) x 
(3/6) = .024 
Joint Probabilities of any Two Events 

The multiplication rule is used pervasively because in many instances, the events of which 
the joint probability is sought can be construed as mutually independent. But what if events are 
not necessarily independent? In this case, joint probabilities can often be computed because 
relevant conditional and unconditional probabilities are known. That is, considering two events, 
A and B, if one knows the two probabilities, p(A) and p(A|B), one can reason as follows: we 
know that  

€ 

p(A | B) = p(A∩B)
p(A)

 

and therefore, by multiplying both sides of this equation by p(A), we arrive at, 

p(A∩B) = p(A)p(B|A) 

Note, by the way, that if A and B are independent, then p(B|A) = p(B) and the equation becomes 
the multiplication rule for two independent events. 

Here are two examples of how this formula can be used. 
Example 1: Imagine that there is a seminar consisting of five people: three females and two 

males. Each week, one person is randomly chosen to lead the seminar, with the provision that 
different people must lead it in Week 1 and Week 2. Now what is the probability that the seminar 
leader is a female in both Weeks 1 and 2, a probability that we can denote as, p(F1∩F2)? To 
answer this question, we reason first that p(F1) = 3/5, as the first week’s leader is chosen 
randomly from the five people. Now given F1—that is, given that a female is chosen to lead the 
seminar on Week 1—what is the probability that another female is chosen to lead on Week 2? 
This probability, p(F2|F1), can be calculated by noting that on Week 2, there are only four people 
under consideration—the two males and the two females who weren't the leader on Week 1. 
Therefore, this probability is p(F2|F1) = 2/4, and the joint probability we seek is, 

p(F1∩F2) = p(F1) x p(F2|F1) = (3/5) x (2/4) = 0.30 

Example 2: Imagine a population of people that is divided into three genetic types: 12% of 
the population are of Type A, 35% are of Type B, and the remaining 53% are of Type C. Now 
suppose that a particular disease is contracted by Type A people with a probability of 0.22, by 
Type B people with a probability of 0.38, and by Type C people with a probability of 0.16. What 
is the probability that a random person from the population will contract the disease? 
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To answer this question, we can define some terms and match them with the numbers from 
the example: 
p(D) is the probability of a random person contracting the disease. This, of course, is what we’re 
trying to compute. 
The probabilities that a random person will be of one of the three genetic types are, p(A) = .12, 
p(B) = .35, and p(C) = .53. 
The conditional probabilities that people of the three genetic types will contract the disease are, 
p(D|A) = 0.22, p(D|B) = 0.38, and p(D|C) = 0.16. 

Now, we can construe the event, “contracting the disease” as being the union of three 
mutually exclusive joint events, i.e., a person can by Type-A and contract the disease or can be 
Type-B and contract the disease or can be Type-C and contract the disease, i.e.,  

D = (A∩D) ∪ (B∩D) ∪ (C∩D) 

By using the addition rule for mutually exclusive events, we arrive at, 

p(D) = p(A∩D) + p(B∩D) + p(C∩D) 

and from what we have just learned, each of these three joint probabilities is the product of an 
unconditional and a conditional probability, i.e.,  

p(D) = p(A)p(D|A) + p(B)p(D|B) + p(C)p(D|C) = 0.12 x 0.22 + 0.35 x 0.38 + 0.53 x 0.16 = 
0.244 

That is, not quite a quarter of the population is expected to contract the disease. 

Bayes Theorem 
Earlier in this chapter we pointed out that there is no immediately obvious relation between 

the two seemingly related probabilities, p(A|B) and p(B|A). However, these two probabilities can 
be related by an equation as follows. Recall that the equation for conditional probability is, 

€ 

p(A | B)=
p(A∩B)
p(B)

 

and, as we have just seen, p(A∩B) = p(A)p(B|A). Combining these two facts, we arrive at, 

€ 

p(A | B)=
p(A)p(B | A)

p(B)
 

which is referred to as “Bayes Theorem.” 
To see how Bayes Theorem, might be useful, suppose that there has been invented a free and 

easy-to-administer AIDS test. Suppose that the test is relatively error free in that the true-positive 
rate is 100%, and the false-positive rate is but 5%. This, of course, means that a person with 
AIDS has a100% chance of testing positive, while a person who does not have AIDS has but a 
5% chance of testing positive. Finally suppose that the prevalence of AIDS in the population, i.e., 
the probability that a randomly-chosen person has AIDS is one in a hundred. 

The question is: should the test be administered to everyone? At first glance, the answer is, 
“of course, why not?” The intuition is that because the test is relatively error-free, everyone with 
AIDS will know for sure that they have it and can embark on an appropriate course of medical 
action, while almost everyone without AIDS will be able to rest easy. The only downside is that a 
small number—5%—of AIDS-free people will undergo the emotional trauma and needless 
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medical hassles associated with falsely testing positive and thus thinking that they have AIDS 
when they don’t. 

But let’s examine this seemingly minto downside in a different way. When we think about it, 
the 5% probability of an AIDS-free person testing positive is, while somewhat useful, not what 
we really would like to know. Of primary interest is the conditional probability, p(D|P). That is, if 
I am a random person and I test positive for AIDS, what’s the probability that I actually do have 
the disease? Intuitively, it would seem that this probability must be pretty small since the test’s 
error rate is so low. But is it? We can use Bayes Theorem to find out. 

Define “D” as “has the AIDS disease” and “P” as “tests positive.” Translating what we know 
so far into probability notation, gives us: 
Probability that a random person has AIDS: p(D)=.0100 
Probability of a true positive: p(P|D)=1.000 
Probability that a random person doesn't have AIDS: 

€ 

p(D ) =1- p(D) =1- .010 = 0.990  
Probability of a false positive: 

€ 

p(P | D ) = 0.050  
Probability that a random person will test positive: p(P)=0.595 

Where did this last probability, p(P)=0.595 come from? We reasoned as follows. The 
probability of testing positive can be partitioned into two joint probabilities that add together: the 
probability of  having AIDS and testing positive and the probability of not having AIDS and 
testing positive, i.e., 

€ 

p(P) = p(P∩D) + p(P∩D ) . We can calculate these probabilities separately 
using what we already know: 

p(P∩D)=p(D)p(P|D)=0.010 x 1.000 = 0.010 

and, 

€ 

p(P∩D ) = p(D )p(P | D )=0.990 x 0.050 = 0.0495 

So the sum of them is, p(P) = 0.0100+0.0495=0.0595 as indicated above. 
Now we can plug all of this into Bayes Theorem: 

€ 

p(D | P) =
p(D)p(P | D)

p(P)
=

0.010 x 1.000
0.0595

= 0.168
 

This is a counterintuitive result: despite the test’s low error rate, a random person in the 
population who tests positive for AIDS has only about a 17% chance of actually having AIDS! 

Looking at the Bayes-Theorem equation applied to this AIDS-test question provides a bit 
more insight into what’s going on. If we’re interested on the probability of the disease given a 
positive test, then the only part of the population of interest is p(P)=0.0595, the proportion of the 
population in the equation’s denominator  that does test positive. Because the overall incidence of 
AIDS in the population is so small—the 1% that shows up in the equation’s numerator—the 
portion of the tests-positive pool that comes from true-positive people (0.01) is small relative to 
the portion that comes from false-positive people (0.0495). 


